Ориентация в пространстве

Расселение. Расселение требует в первую очередь надежной ориентации в пространстве, иначе животное будет перемещаться хаотично и не сможет покинуть исходную территорию. Расселение, сопряженное с ориентацией, может быть как активным — разлет, расползание, так и пассивным — перенос ветром или водой. При активном расселении насекомые ориентируются в основном зрительно по наземным вехам и небесному компасу в виде солнца, поляризации света голубого неба и луны. При этом наведение на цель становится возможным благодаря механизму одного из таксисов, позволяющему на основе сигналов от рецепторов удерживать локомоторную ось в избранном направлении. «Штурманское искусство» насекомых, способных вносить поправку к избранному курсу на суточное смещение небесных ориентиров, почти не уступает искусству птиц использовать небесный компас. Возможно, насекомые, как и птицы, ориентируются и по магнитному полю Земли. При пассивном переносе, например ветром, насекомые выбирают определенную позу, способствующую направленному переносу тела по воздуху, на основе информации от ветрочувствительных волосков и других рецепторов.
Все названные формы активности связаны либо с локомоцией, либо с удерживанием определенного положения тела в пространстве, а также отдельных частей тела относительно друг друга. И то и другое возможно только на основе информации, поступающей от специальных датчиков. К ним относятся в первую очередь различные механорецепторы, чувствительные к растяжению, сжатию или крутящему моменту — стимулам, прилагаемым к кутикуле, соединительной ткани и мышцам в результате или внешнего воздействия, или внутреннего усилия, или только веса данной части тела. Сигналы механорецепторов обеспечивают контроль позы, координацию движений частей тела при беге, плавании, завивании кокона, копуляции и т. п., а также сигнализируют о разрыве контакта с субстратом, направлении и скорости смещения тела при движении.
О роли сенсорных сигналов в осуществлении двигательных реакций насекомых дает хорошее представление анализ броска богомола Mantis religiosa на добычу. Богомол, поворачивая голову, выслеживает добычу зрительно и может схватить ее даже тогда, когда она находится сбоку от его продольной оси. Следовательно, центр, управляющий броском, должен располагать информацией как о направлении на жертву относительно головы богомола, так и о положении головы относительно переднегруди с ее хватательными ногами. Информацию первого рода дают глаза, информацию второго рода дают механорецепторы — две пары так называемых волосковых пластинок в шейной области. Если перерезать нервы от всех шейных волосковых пластинок (деафферентировать управляющий центр), то надежность броска падает до 20—30% против 85% в норме. При деафферентации только одной левой стороны промахи учащаются, причем замечается тенденция богомола направлять бросок правее цели. Сигналы, поступающие только от правых шейных пластинок, истолковываются управляющим центром как поворот головы вправо.
Афферентный контроль ходьбы осуществляется исключительно большим набором механорецепторов: в частности, за стимуляцию тех или иных ножных мышц леваторов и депрессоров отвечают определенные рецепторы лапки, голени, бедра. Некоторые из них, например колоколовидные сенсиллы, расположены так, что их возбуждают силы натяжения, возникающие в ноге, когда насекомое нормально стоит. Поэтому если разрушить механорецепторы ноги, то у насекомого нарушается механический аспект ходьбы: аллюр, скорость и т. п. Поза при ходьбе часто регулируется за счет обратной связи с волосковыми пластинками, которые контролируют угол между коксой и трохантером (вместе с бедром). Палочник Caraussius morosus в норме свободно удерживает тело над грунтом. Зазор между ними сохраняется и тогда, когда насекомое несет на себе груз вчетверо тяжелее тела. Если же волосковые пластинки повреждены, то палочник начинает касаться субстрата даже под тяжестью собственного тела.
Из всех форм локомоции наиболее требователен в отношении сенсорной информации полет. Афферентные сигналы не только вызывают полет, они же необходимы и для его поддержания и регулирования. Хорошо известен так называемый тарзальный рефлекс: отрыв ног от опоры у многих насекомых вызывает полет или плавательные движения (например у водяных клопов — белостоматид), сразу же прекращающиеся при возобновлении контакта с субстратом. Датчиками тарзального рефлекса служат несколько типов механорецепторных сенсилл в ногах. К числу рецепторов, поддерживающих полет, относятся ветрочувствительные волоски на голове и крыльях. Их фазово-тонические сигналы зависят от скорости и направления воздушного потока и могут не только поддерживать и регулировать полет, но и запускать его. У пчел, мух, тлей к автоматической стабилизации полета причастен также Джонстонов орган антенн. Его сигналы наряду с другими датчиками регулируют работу крыльев: чем больше давление воздуха на жгут антенны, тем меньше амплитуда взмахов ипсилатерального крыла. Легко представить, что на основе такой петли отрицательной обратной связи автоматически удерживается прямолинейное направление полета.







Материалы

Яндекс.Метрика