Топология - из листа Мебиуса
«ТО, ЧТО Я ПОНЯЛ, ПРЕКРАСНО, ИЗ ЭТОГО Я ЗАКЛЮЧАЮ, ЧТО ОСТАЛЬНОЕ, ЧЕГО Я НЕ ПОНЯЛ, ТОЖЕ ПРЕКРАСНО», — высказался в свое время Сократ по поводу неясностей у Гераклита. Быть может, эти слова послужат неким утешением для того, кто не сумеет одолеть суть радиотехнического дебюта листа Мебиуса. Хотя понять ее не так уж невозможно. Есть простой, но в данном случае неприятный для радиотехников факт: каждое тело имеет форму и как-то располагается в пространстве. А потому оно ведет себя либо как маленький конденсатор — обладает собственной электрической емкостью и, значит, оказывает переменному току емкостное сопротивление, либо поступает подобно крохотному дросселю — тогда его сопротивление индуктивное. Оба этих сопротивления, оказываемых телом электрическому току, называют реактивными. И избавиться от них, как и от того, что у него есть какая-то форма, ни одно тело как будто не может.
А теперь вспомним факт, в котором нам только что пришлось убедиться: «трижды толстый мебиус» можно сделать по-разному — и из трех отдельных частей и всего из двух: короткой центральной и особым образом уложенной длинной заготовки, которая одна образует обе боковые стороны. Значит, ток в безреактивном сопротивлении дважды проходит по одному и тому же месту в пространстве, но оба раза в противоположных направлениях, пробегая по длинной ленте — алюминиевым полоскам, уложенным «восьмеркой» с двух сторон короткой — резинового изолятора. Таким образом, реактивность реактивностью же и уничтожается. И потому такое закрученное сопротивление остается чисто активным, даже если изгибать его как угодно или помещать в любое внешнее поле.
Конечно, радиотехники должны быть особенно благодарны Августу Фердинанду Мебиусу — ведь им приходится иметь дело с миллионами герц, а чем выше частота, тем больше «реактивность» каждого элемента схемы и тем больше помех вносят в ее работу нынешние «нечисто активные» сопротивления. Но, пожалуй, с еще большим энтузиазмом встретят новое изобретение физики, которые занимаются сверхпроводимостью. Как известно, при очень низких температурах, близких к абсолютному нулю, сопротивление электрическому току вдруг пропадает, и он может течь неограниченно долго, не требуя никакого притока энергии извне. Да, но речь идет об активном сопротивлении.
Реактивное же сопротивление сверхнизкой температурой и всей невероятно сложной техникой, созданной для ее получения, не уничтожается. Зато простейшее геометрическое преобразование обещает физикам скорую и неожиданную помощь.
Быть может, мечта о вечном электрическом двигателе, не требующем никакой энергии для своей работы, теперь уже близка к своему осуществлению?
Но до сих пор речь шла всего об одном свойстве листа Мебиуса — о его односторонности. А ведь у него есть еще и другие подобные свойства. Но какие подобные? Математик назвал бы их топологическими.
Сама топология, можно сказать, началась именно с листа Мебиуса. Слово это придумал Иоганн Бенедикт Листинг, профессор Геттингенского университета, который — и это далеко не всем известно — почти в то же время, что и его лейпцигский коллега, предложил в качестве первого примера односторонней поверхности уже знакомую нам единожды перекрученную ленту. Наука эта молодая и потому озорная. Иначе не скажешь о тех правилах игры, которые в ней приняты. Любую фигуру тополог имеет право сгибать, скручивать, сжимать и растягивать — делать с ней что угодно, только не разрывать и не склеивать. И при этом он будет считать, что ничего не произошло — все ее свойства остались неизменными. Для него не имеют никакого значения ни расстояния, ни углы, ни площади. А что же его интересует? Самые общие свойства фигур, которые не изменяются ни при каких преобразованиях, если только не случается катастрофы — «взрыва» фигуры. Потому иногда топологию называют «геометрией непрерывности». Она известна и под именем «резиновая геометрия», потому что топологу ничего не стоит поместить все свои фигуры на поверхность детского надувного шарика и без конца менять его форму, следя лишь за тем, чтобы шарик не лопнул. А то, что при этом прямые линии, например стороны треугольника, превратятся в кривые, для тополога глубоко безразлично.