Вторичная ориентация тела

Другой пример замкнутой контролирующей системы, постоянно работающей у двигающегося насекомого, дает управление оптомоторной реакцией. Здесь петля отрицательной обратной связи замыкается через посредство сигналов от глаз, и благодаря ей насекомое автоматически (непроизвольно) сводит к минимуму сдвиг на сетчатке изображения окружающей картины, что корректирует первичную и вторичную ориентацию тела.
Итак, однажды заданное на основе первичной или вторичной ориентации положение всех трех осей тела прочно удерживается насекомым с помощью разнообразных корректирующих механизмов. Они стабилизируют положение тела, предотвращая пассивное смещение под действием внешних сил: ветра, колебания субстрата и т. п. Но вместе с тем насекомое может активно принять любое положение в пространстве. Представляет интерес выяснить, выключаются ли при таких активных движениях названные контролирующие механизмы или же они работают постоянно? Если верно последнее предположение, то позиционное изменение должно было бы соответствовать ожидаемому значению стимула в контролирующей системе. На примере мухи Eristalis показано, что в ходе активного движения не выключаются, по крайней мере, оптомоторные контролирующие механизмы. Так, если изменить пространственное соотношение между фоторецепторами и эффекторами путем поворота головы на 180°, то муха станет неспособной активно двигаться. Способность двигаться утрачивается потому, что следующий за каждым изменением положения тела в пространстве стимулирующий эффект оказывается противоположным тому, который ожидается. Последующие «корректирующие» действия еще более увеличивают ошибку. Из результатов этого и подобных опытов вытекает принцип реафферентации, состоящий в том, что для каждого активного движения сохраняется некоторая копия эфферентных сигналов, посланных мышцам, которая сравнивается с реафферентными, сигналами, вызванными движением. Благодаря тому же самому корректирующему механизму, что и при удерживании устойчивого положения тела (что важно как защита от внешних воздействий), эфферентные сигналы продолжают поступать к мышцам, пока эфферентная копия и реафферентные сигналы не «скомпенсируют» друг друга. Такая схема управления известна в технике под названием петли обратной связи с ожидаемым значением активно регулируемой величины.







Материалы

Яндекс.Метрика