Превращение энергии посредством асимметричных мембран

Из изложенного ясно, что степень совершенства функционирования системы преобразования термодинамического потенциала экзэргонических реакций в термодинамический потенциал макроэргических соединений становится на ранних стадиях развития жизни фактором эволюции, критерием естественного отбора.
Совершенство образования и использование макроэргических фосфатов слагается из двух компонентов: кинетического — скорости соответствующих реакций, разнообразие и концентрации необходимых ферментов и термодинамического — эффективности (КПД) сопряженного преобразования энергии.
Кинетика этих как и других биохимических процессов определяется совершенством соответствующих ферментов и величиной диффузионных ограничений.
Термодинамическая эффективность сопряженных преобразований, хотя это и кажется на первый взгляд странным, определяется реальными путями, механизмами перехода системы из одного состояния в другое. В самом деле, мы видели, что Л может быть превращено в В при полном рассеянии — превращении
в тепло выделяющейся энергии. Эта энергия до тепловой деградации может быть направлена на выполнение какой-либо работы!
Таким образом, качество использования термодинамического потенциала, КПД его преобразования в полезную работу Полностью определяется (до теоретического предела) реальным механизмом преобразования энергии. Таким образом биошоТич-е-
ская эволюция должна быть направлена на выработку предельно
совершенных механизмов сопряженного образования использование макроэргических фосфатов.
Рассмотрим «а-приорные» свойства таких механизмов.
В сущности сам переход от накопления энергии в простых буферных емкостях к биохимии макроэргических соединений был решающим шагом к такому совершенству. Он, как мы видим, состоял в векторизации потока энергии от безадресного изменения рН к точно направленному переносу термодинамического потенциала к строго определенным молекулам и процессам посредством молекул АТФ.
От чего зависит эффективность сопряженного синтеза АТФ?
Вероятно, более всего эффективность сопряжения зависит от соответствия квантов энергии, поступающей в систему синтеза АТФ и порций энергии, необходимых для синтеза одной макро-эргической связи. В самом деле, при фотохимическом сопряжении кванты света относительно очень велики 100—40 ккал/моль, а для синтеза ~Р связей нужно около 10 ккал/моль. Следовательно, фотохимическое «одноактное» сопряжение не может быть эффективным. Такая же картина наблюдается при фосфорилиро-вании, сопряженном с поглощением кислорода и окислением, например, водорода. Эта реакция «гремучего газа» сопровождается выделением 55 ккал/моль образующейся воды. Общеизвестен выход из этого затруднения, найденный в ходе эволюции— замена одноэтапных превращений — многоэтапными, в которых энергия выделяется относительно небольшими порциями. В результате процесс окисления водорода органических молекул до воды осуществляется посредством последовательной цепи «транспорта электронов» — системы окислительно-восстановительных переносчиков. Теперь возникает новая сложная задача — обеспечения синтеза АТФ сопряженно с окислительно-восстановительными переходами разных переносчиков. Кроме того, создание системы переносчиков с идеальными перепадами термодинамического (окислительно-восстановительного) потенциала очень сложно — эффективность энергетических преобразований может быть низкой. Как мы видели, синтез АТФ из АДФ и Н3Р04 при нормальных рН сопровождается образованием ОН- — защела-чиванием среды.
АДФ»- + HPOJ- -» АТФ" + ОН".
Процесс синтеза АТФ может быть продуктивным лишь при сопряженной нейтрализации образующихся ионов гидроксила в реакции нейтрализации:
ОН- + Н+^Н2о.
Эта реакция экзэргонична. Величина АР ее вполне приемлема (~20 ккал/моль) для энергетического сопряжения с синтезом макроэргических фосфатов (АР'~ 10 ккал/моль).
Мы видели, однако, что в реальных буферных системах с рК близким к рКг фосфатных групп нельзя обеспечить сопряженное изменение свободной энергии более чем на 3—5 ккал/моль.







Материалы

Яндекс.Метрика