Механо-химические преобразования энергии

Простейшим механизмом, обеспечивающим перемещение в пространстве нашей схематизированной клетки, представляется изменение поверхностного натяжения на границе раздела: наружная мембрана — внешняя среда (вода). Причиной увеличения или уменьшения поверхностного натяжения может быть изменение соотношения гидрофобных и гидрофильных групп в липопротеидных комплексах, образующих мембрану. Если расстояние, на которое должны переместиться клетка, превышает ее линейные размеры, аппарат, обеспечивающий движение, должен работать периодически. Поэтому п изменения поверхностного натяжения должны быть периодическими. Периодические, обратимые изменения поверхностного натяжения в разных местах наружной мембраны приведут к беспорядочному, разнонаправленному «перетеканию» клетки с места на место — образованию псевдоподий и (к) амебоидному движению. Если такие изменения поверхностного натяжения будут происходить лишь в некоторых местах поверхностной мембраны, клетка будет получать импульс и перемещаться в каком-либо определенном направлении, совершать более или менее «целесообразные» амебоидные движения.
Наиболее вероятным представляется изменение поверхностного натяжения наружной мембраны в результате выделения из клетки низкомолекулярных веществ (лигандов), связывание которых с липопротеидными комплексами изменяет в них гидро-фобно-гидрофильные соотношения. Такими лигандами могут быть спирты, жирные кислоты или двухвалентные катионы, например ионы кальция.
В такой модели клетка уподобляется капле жидкости, поверхностное натяжение которой изменяется в результате реакции поверхностных макромолекул с веществом, порциями поступающим изнутри капли (клетки). Форма капли резко изменяется, и сама капля перемещается за счет сообщаемого ей этим изменением импульса. Вещество, вступившее в реакцию с поверхностными макромолекулами, расщепляется в ходе ферментативного процесса, катализируемого, например, самими этими макромолекулами, и форма капли возвращается к исходной. Многократное, периодическое изменение формы клетки может привести к непрерывному перемещению организма в пространстве, причем его направление определяется локализацией участков поверхности, изменяющих свои свойства. Прежде чем анализировать эту модель, следует отметить, что она была создана около 100 лет назад и была очень популярна в начале нашего века.
В 1888 г. Квинке предложил теорию протоплазматического (амебоидного) движения, основанную на аналогии с процессом растекания капель масла по поверхности воды. Очень хорошее изложение взглядов Квинке и всей проблемы в целом было осуществлено замечательным физиологом и биологом Ж. Лебом в его классической книге «Динамика живого вещества». Для иллюстрации такого способа движения предлагалось несколько моделей. Одну из них и рассматривает Леб. В его модели к капле оливкового масла добавлялось такое количество хлороформа, чтобы удельный вес смеси сравнялся с удельным весом раствора соды (0,5—2%), в который и погружали каплю смеси. В оливковом масле всегда присутствуют значительные количества жирных кислот, и на поверхности капли они образуют мыло (т. е. соли с ионами натрия окружающего раствора). Поверхностное натяжение в месте образования мыла резко падает, и из капли вырастает «псевдоподия», в которую устремляется содержимое капли. При этом площадь взаимодействующей со средой поверхности растет, образуются новые порции мыла — капля движется.
Таким образом, наша исходная модель отнюдь не нова. Впрочем, именно наглядность, явная и грубая упрощенность модели Квинке вызывала в свое время вполне справедливые упреки в «механицизме».
Аппараты биологического перемещения в пространстве, реальные механизмы движения протоплазмы или амебоидного движения бесспорно специфичны и сложны, поскольку они возникли в результате сотен миллионов лет эволюции. Однако исходные для эволюции физические механизмы, вероятно, вполне соответствуют принципам, механизмам движения неспециализированных макромолекулярных комплексов. И сейчас, с высоты уже имеющихся знаний о специфичных и сложных аппаратах биологического перемещения в пространстве мы можем попытаться найти эти исходные принципы и посмотреть, куда должна привести биологические системы с такими исходными данными последующая эволюция. (В предложенной Л. X. Эйдусом теории мышечного сокращения изменение поверхностного натяжения, капиллярных сил рассматриваются в качестве основного механизма).







Материалы

Яндекс.Метрика