Происхождение и биологический смысл многоклеточности

Переход от ундулоподий к мышцам сопряжен с возникновением многоклеточности. В самом деле, каждая сокращающаяся (мышечная) клетка с сократительной нитью, прикрепленной к внутренней стороне оболочки клетки, функционально равнозначна
основано на соответственном чередовании синтезов определенных белков.
Ясно, что преимущественный синтез белков для обеспечения какой-либо преобладающей в данный момент функции основан на репрессии синтезов других белков, не нужных в данный момент. Это требует очень громоздкой и неэкономичной системы регуляции считывания матричных текстов — больших концентраций разных на разных стадиях жизни клетки белков-репрессоров сложного аппарата управления синтезом самих репрессоров, существования механизмов целесообразной дерепрессии (активации) синтеза очередных белков.
Помимо громоздкости и неэкономичности такой системы существенна медленность включения очередных функций — необходимо длительное время для прекращения уже идущих синтезов, появления репрессоров, дерепрессии очередных генов и т. д.
Специализация клеток состоит прежде всего в специализации их генома — утрате или прочной репрессии большей части генов. Предельно специализированной клеткой является эритроцит млекопитающих. Он содержит практически (по массе) лишь один белок —гемоглобин— и выполняет лишь одну функцию: транспорт кислорода и углекислоты. В гораздо более сложных мышечных клетках преобладает синтез сократительных белков.
Итак, специализация — основной путь совершенствования функций — достигается лишь в многоклеточных организмах. Специализация обеспечивается дифференциацией клеток — стойкой репрессией или даже утратой значительной части наследственных текстов в процессе онтогенеза.
Ясно, что специализация клеток в многоклеточном организме возможна лишь при возникновении системы взаимосвязи специализированных клеток, объединяющей их в единый организм — «государство клеток», как говорил Р. Вирхов. Такая связь осуществляется посредством химических (гормональных) или электрических (нервных) сигналов.
Само существование многоклеточных организмов сопряжено с новыми эволюционными «заботами» — обеспечением определенной «внутренней среды», целостности, регенерации при повреждении и т. п. Обсуждение этих проблем выходит за пределы задач этой книги.
На самом деле имеется несколько типов явлений биологической подвижности. Прежде всего это движение протоплазмы'. Потоки протоплазмы омывают или даже увлекают с собой клеточные органеллы, осуществляя активное перемешивание внутриклеточного содержимого. Кинетический смысл такого перемешивания очевиден. Движение протоплазмы происходит в клетках растений, животных, низших грибов. Удивительным образом его механизм, несмотря на примерно 200-летнюю историю исследований, все еще не ясен. Об этом свидетельствует чрезвычайное изобилие остроумных гипотез и теорий, объясняющих этот феномен. Яркая особенность движения протоплазмы состоит в правильной периодической смене направления движения потоков. Мне представляется наиболее вероятной причиной движения протоплазмы синхронизация конфдрмационных движений ансамблей специализированных макромолекул. Изменения направления — колебания вектора напряжения — могут быть результатом явления, аналогичного «волнам структурной перестройки» — перекристаллизации то по одной, то по другой затравке. Следует отметить, однако, что Н. С. Аллен сообщила об обнаружении в эндоплазме нителлы нитей, аналогичных жгутикам, биением которых обусловлено движение протоплазмы.
Ко 2-му типу явлений биологической подвижности можно отнести амебоидное движение, очень часто неотличаемое от движения протоплазмы. Однако мне представляется их различие существенным — образование и исчезновение псевдоподий сопряжено не только с перетеканием протоплазмы, но и образованием (исчезновением) поверхностной мембраны, а также с изменением кортикального слоя клеток типа гель±золь.
3-й тип явлений биологической подвижности движения хромосом при митозе и мейозе. При этом существенна все еще необъяс-ненная правильность пространственного взаиморасположения гомологичных хромосом. Расхождение хромосом к соответствующим центриолям происходит в результате сокращения нитей веретена, пучков, микротрубочек, состоящих из белка тубуллина.
Своеобразные движения 4-го типа осуществляются в результате изменения тургора — гидростатического давления, обусловленного осмотическими или иными механизмами. Так, посредством амбулакральной системы перемещаются иглокожие. Изменения тургора обусловливают движения растений — открывание и закрывание устьиц, опускание и поднятие листьев.
К 5-му типу движений относится перемещение бактерий (прокариот вообще) посредством жгутиков. Каждый жгутик бактерий состоит обычно из трех фибрилл, образованных последовательно соединенными глобулами белка флагеллина. В большинстве случаев нити жгутиков длиной порядка микрон и диаметром около 120А, лишены оболочки (мембрана).







Материалы

Яндекс.Метрика