Запасание энергии для длительного хранения

Затем был осуществлен синтез АТФ за счет энергии света, поглощаемого хлорофиллом, адсорбированным на частицах суспензии окиси алюминия. В 1977 г. эти же авторы опубликовали результаты опытов, в которых наблюдали синтез макроэргических фосфатов за счет энергии света, поглощаемого не только хлорофиллами а и Ь, но феофитином (хлорофиллом без атома Mg в центре порфиринового кольца и р-каротином). Модельное фотофосфорилирование было осуществлено также в очень простой системе — суспензии соответствующих пигментов в частицах окиси алюминия в водных растворах КН2Р04 и АДФ. В том же 1977 г. Н. В. Гончаров и В. Б. Евстигнеев сообщили о синтезе АТФ, сопряженном с быстрым изменением рН в суспензии адсорбированных на частицах окиси алюминия хлорофилла в водном растворе КН2Р04 и АДФ и измененным рН от 4,0 до 7,8—8,4. Наблюдалось образование 0,4 мкмолей АТФ яз 10 бывших исходно мкмолей АДФ, т. е. около 4% —выход продукта нельзя считать большим, но сам факт синтеза АГФ в этих условиях представляется чрезвычайно важным.
Макроэргические соединения даже в случае предельно эффективного сопряженного с экзэргоническими реакциями их синтеза мало пригодны для длительного запасания больших количеств энергии — очень уж мала их удельная энергетическая емкость. Свободная энергия гидролиза макроэргических соединений равна 10—20 ккал/моль. Для синтеза макромолекулы среднего размера из нескольких сотен мономеров нужно соответственно в 2— 3 раза большее число сотен молекул типа АТФ (или креатинфос-фата). Накопление высоких концентраций макроэргических соединений физико-химически невозможно: высокая ионная сила, большое осмотическое давление и т. д. затрудняют сохранение необходимой конфигурации макромолекул. Нужны более компактные хранилища энергии. Один из видов таких хранилищ (уже упоминавшиеся выше полифосфаты) — полимеры ортофосфорной кислоты, остатки которой соединены ангидридными пи-рофосфатными связями. Однако эти «питательные камни», по-видимому, имеют принципиальный недостаток — при использовании накопленной в них энергии образуются те же высокие концентрации кинетически активных молекул фосфорной кислоты и множество катионов, связанных на полифосфате, как на поликатионите. И самое главное как мы видели, макроэргич-ность макроэргических соединений обусловлена в основном емкостью рН-буферных систем. Запасание больших количеств энергии в макроэргических соединениях возможно лишь при высокой концентрации рН-буфера, т. е. при высокой ионной силе большом осмотическом давлении и других «неприятных» физико-химических условиях. Таким образом, по самой своей природе макроэргические соединения не пригодны для запасания значительных количеств энергии. Процесс запасания энергии должен происходить не в результате ионных превращений, а вследствие превращений электрически нейтральных молекул.
Направление эволюционных поисков в связи со сказанным ясно — энергия должна запасаться в молекулах, окислительная деградация которых сопровождается освобождением большого количества энергии. Наиболее экзотермичны реакции полного окисления углеводородов.
Изменение энтальпии АН при таком полном окислении (сжигании) углеводородов составляет примерно 106 ккал на 1 моль израсходованного кислорода. Синтез углеводородов, сопряженный с поглощением энергии, излучаемой Солнцем, можно считать пределом термодинамического совершенства запасания энергии. Кислород, необходимый для освобождения энергии, накопленной в синтезированных углеводородах, образуется в том же процессе их фотосинтеза (нужно, правда, удержать 02 до момента темнового окисления).
Однако углеводороды гидрофобны и, следовательно, сечение взаимодействия, т. е. поверхность, доступная действию ферментов, оказывается очень малым. Кинетика использования углеводородов весьма несовершенна (мы снова убеждаемся здесь в несоответствии термодинамического и кинетического критериев биологического совершенства). Для запасания энергии нужны гидрофильные вещества. Среди них на первом месте — жирные кислоты (особенно ди- и трикарбоновые) и углеводы. Синтез углеводов, сопряженный с фотохимическим разложением воды (аналогичным выдуманному нами процессу разложения воды при превращении Fe2+5=Fe3+), представляет наиболее рациональный способ запасания легко мобилизуемой энергии и вещества. Когда быстрое использование энергии не требуется, а нужно запасти ее и отправить на длительное хранение, может происходить фотосинтез жирных кислот с длинной цепью (их триглицеридов — жиров и масел) полисахаридов, белков (как, например, в семенах, клубнях ныне существующих растений).







Материалы

Яндекс.Метрика