Морфологические задачи

Ясно, что суммарный поток можно увеличить, увеличивая поверхность, через которую осуществляется диффузия. Предметом отбора становится форма организма, его геометрические характеристики. Наименее выгодной формой организма данной массы является шар, так как его поверхность минимальна, наиболее выгодной — нить. Следовательно, первый шаг эволюции в направлении морфологического прогресса должен состоять в выработке механизмов построения нитевидных организмов вместо шарообразных. Эта задача уже довольно сложна. Ведь нить не может быть длинной — из-за медленности диффузии нарушатся связи между ее частями. По-видимому, пределом совершенства в данном эволюционном направлении является многолучевой еж, организм типа известных из зоологии беспозвоночных солнечников. Но такая сферически симметричная многолучевая морфология предельно совершенна лишь в отсутствие градиентов пищевых веществ и энергии. Равномерно питательная во всех направлениях среда окружает лишь планктонные организмы (и то, если пренебречь, например, градиентами света). В большинстве же случаев существует строгая направленность потоков пищи и энергии, что приводит к более сложным морфологическим задачам. Их можно решить путем выработки геометрических структур типа ветвей, стволов, листьев. Этот путь, путь морфологического прогресса для преодоления диффузионных ограничений, привел к возникновению сложной и рациональной геометрии растений (деревьев, трав) и животных, ведущих прикрепленный образ жизни (кораллы, актинии).
Совершенно ясно, что морфологические задачи возникают в дальнейшем и в связи с другими эволюционными проблемами. Однако именно вследствие необходимости преодоления диффузионных ограничений должны выработаться все основные мор-фогенные механизмы. Понятно, что естественный отбор наиболее совершенных геометрических форм организмов может осуществляться лишь при наследственном закреплении сведений о наиболее удачных морфологических конструкциях. Следовательно, в матричных текстах должны быть записаны не только сведения о строении (свойствах) ферментов, структурных белков, биодетергентов и т. д., но и инструкции для построения данных морфологических, геометрических конструкций, форм. Способ кодирования все тот же — посредством определенной последовательности нуклеотидов в полинуклеотидной цепи. Проблема перевода нуклеотидного текста в пространственное взаиморасположение частей организма, его морфологию—центральная проблема современной биологии. Однако прежде чем перейти к этой увлекательной проблеме, нужно все же сказать, что морфологический прогресс — не единственный способ преодоления диффузионных ограничений. И даже не лучший. Значительно большим эволюционным потенциалом характеризуется совершенствование путем создания аппаратов активного перемещения в пространстве. Этим направлением мы займемся в следующей главе, а сейчас продолжим рассмотрение проблем морфогенеза
Когда говорят о морфологии организмов, невольно возникает образ многоклеточного организма сложной формы. В многоклеточном организме морфология обусловлена главным образом пространственным расположением клеток друг около друга.
Однако некоторые вопросы преобразования наследственной информации в морфологические особенности можно сформулировать уже для одноклеточных организмов и даже для неклеточных— вирусов и фагов. В самом деле, многие одноклеточные организмы имеют весьма сложную морфологию. На 15 изображены гигантские (для клеток) одноклеточные (точнее, неклеточные) водоросли каулерпа, ботридиум и ацетабулярия, на 16 — сложнейшие из одноклеточных животных — инфузории разных родов и жгутиконосцы, замечательные своей уникальной морфологией. Уникальная и очень сложная морфология свойственна и отдельным органеллам одноклеточных животных (17), а также изученным Н. К. Кольцовым сперматозоидам насекомых, пауков и ракообразных (18). О сложности морфологии вирусов и фагов можно судить по 19.
Таким образом основные механизмы морфогенеза, вероятно,, в наиболее чистом виде можно надеяться выявить уже для одноклеточных и даже неклеточных форм жизни.







Материалы

Яндекс.Метрика