Динамика живой протоплазмы

В самом деле, какова консистенция протоплазмы? После замечательных успехов электронно-микроскопических исследований в биологии возникло общее мнение: протоплазма — не жидкость, не «суп», где свободно плавают органеллы, а жестко организованное гелеобразными структурами образование. Однако в большинстве случаев это представление основано на рассмотрении электронных микрофотографий фиксированных препаратов, тогда как ответ на вопрос о консистенции протоплазмы могут дать лишь прижизненные наблюдения. Именно такие наблюдения (например, над формой и движением микрокапли масла, введенной в живую клетку), показали, что протоплазма представляет собой изотропную жидкость. Эти данные, а также другие подтверждения жидкого состояния протоплазмы приведены в книге патриарха физиологии клетки Л. Гейльбруиа «Динамика живой протоплазмы».
Приведенное рассуждение, т. е. вывод о невозможности обеспечения должной интенсивности биохимических процессов в клетке при осуществлении специфического переноса веществ посредством специфического связывания в толще протоплазмы, имеет прямое отношение к недавней острой дискуссии. Д. Н. Насонов и его последователи полагали, что именно специфическое связывание в протоплазме лежит в основе механизма избирательного противоградиентного переноса. Д. Л. Рубинштейн наиболее ярко представлял противоположную точку зрения, а именно необходимость существования избирательно проницаемых клеточных мембран. За прошедшие после дискуссии годы наши знания о механизмах специфического переноса веществ в биологических системах чрезвычайно расширились и углубились. Ключевая роль мембран давно уже не вызывает сомнений. Однако механизм специфического связывания отнюдь нельзя считать полностью отвергнутым. Из общих соображений, приведенных выше, следует лишь, что внутриклеточное связывание низкомолекулярных веществ как способ проти-воградиентного транспорта не совместимо с высокой скоростью биохимических процессов. Однако в ряде специальных случаев внутриклеточное связывание может оказаться очень эффективным.
Мы видим, следовательно, что в ходе эволюции возникли несовместимые требования —с одной стороны, необходимо жидкое состояние значительной части внутриклеточного содержимого, несвязанное состояние внутриклеточных низкомолекулярных веществ (пока они не включаются непосредственно в ферментативные процессы), свободная их диффузия, а с другой, необходим строго специфичный противоградиентный перенос через клеточную мембрану. Выход из этого положения может состоять в постулировании аппарата специфического связывания и переноса веществ, сосредоточенного в мембране или примембранных слоях, и в сопряжении процессов переноса с расходом макро-эргических соединений (или в более общей формулировке — сопряжении эндэргонического переноса с каким-либо экзэргониче-ским процессом).
Истинные механизмы специфического трансмембранного транспорта все еще не вполне выяснены. Этим вопросам посвящен ряд фундаментальных исследований, к которым и должен обратиться читатель. Тем не менее, в общем виде ответ известен. Противоградиентный перенос осуществляется или за счет свободной энергии гидролиза пирофосфатной связи АТФ или за счет распада ее макроэрги-ческого предшественника. Специфичность транспорта веществ через мембрану достигается либо путем связывания этих веществ со специфическими молекулами белков-переносчиков, либо посредством калиброванных пор.
Целостность поверхностной мембраны — условие существования клетки. Раздражимость и возбудимость. Ясно, что повреждение поверхностной оболочки (клеточной мембраны) должно приводить к гибели клетки. Нарушение целостности мембраны сопряжено с потерей внутриклеточного содержимого и вхождением в клетку вредных компонент из внешней среды. Условием дальнейшего эволюционного прогресса оказывается теперь выработка быстрой реакции на повреждение. Эта реакция должна быть сопряжена с включением (и выключением) определенных биосинтетических систем, например, с включением системы интенсивного синтеза фосфолипидов и белков. Таким образом, очередная задача эволюции состоит в выборе предельно совершенного вида сигналов о целостности и нарушении целостности клеток. Кажется разумным предположить, что эти сигнальные функции могла бы выполнять относительно безвредная компонента внешней среды, всегда присутствующая в достаточных количествах в первичной среде обитания древних организмов. Для выбора такой компоненты необходимо выяснить состав первичной среды обитания живых организмов.







Материалы

Яндекс.Метрика