Первичный источник энергии в биохимической эволюции

Посмотрим теперь, какие источники энергии могут быть использованы в ходе эволюции. Оценим сначала количество энергии, требуемой для обеспечения указанных выше нужд. Например, процесс синтеза пептидной связи относится к эндэргоничес-ким реакциям — для синтеза 1 моля пептидных связей необходимо затратить 3—4 ккал свободной энергии. По-видимому, когда-нибудь удастся из общих соображений оценить и желательную величину сверхравновесного синтеза. Допустим, что сверхравновесная концентрация продукта в 105—106 раз превышает величину, определяемую термодинамическими соотношениями. В соответствии с известными термодинамическими формулами на это потребуется еще 7—8 ккал/моль:
где С, и С2 — концентрации исходных реагентов и конечных продуктов соответственно. Так, для обеспечения выбранной сверхравновесной степени полимеризации аминокислот приходится тратить около 10 ккал на синтез 1 моля пептидных связей. Близкие по порядку величины мы получим при оценке энергетических расходов и в других процессах. Эти относительно очень небольшие порции энергии всего в 10—20 раз превышают kT. Кванты такой величины соответствуют инфракрасному излучению (длины волн около 3—1,5 мк), которое поглощается вследствие возбуждения колебательных степеней свободы многими органическими веществами. Казалось бы все в порядке — инфракрасное излучение может быть искомым источником энергии для наших целей. Однако оно сильно поглощается водой (недаром ИК-спектры органических молекул снимают обычно в безводных препаратах). Поэтому волны такой длины практически исключаются из числа возможных источников энергии. Следовательно, источником энергии может служить излучение, непоглощаемое водой. Значит, речь может идти о видимом свете (поэтому и видимом!) и об ультрафиолете. Короткий ультрафиолет также не годится, так как энергия соответствующих квантов сравнима по величине с энергиями связей в молекулах — будет происходить разрушение молекул.
Вслед за В. П. Скулачевым можно считать наиболее вероятным источником энергии во времена возникновения жизни свет. Этот вывод означает допущение первичности фотосинтеза, возникновения его в самом начале совершенствования систем энергетических превращений в биологических системах. Конечно же, речь не идет о процессе, подобном современному фотосинтезу. Ясно, что только избирательное поглощение излучения способно обеспечить энергией лишь определенные процессы, а не все реакции, как, например, при нагревании. В процессах, идущих в первичных матричных структурах, существование такой избирательности вполне вероятно. Для нуклеиновых оснований характерно сильное поглощение в области 260 нм, что соответствует (в расчете на 1 моль) порции энергии около 100 ккал. Это, конечно, слишком много, но для начала эволюционного совершенствования вполне терпимо. Основной результат поглощения света с такой длиной волны полинуклеотидными цепями — разрыв валентных связей, например, отрыв нуклеинового основания от рибозы, замена одного основания на другое. Вследствие интенсивных мутаций и обусловленных ими вариаций последовательности аминокислот в полипептидной цепи происходил отбор катализаторов, способствующих синтезу пигментов, которые поглощают видимое и ближнее инфракрасное излучение, соответствующее нужным квантам энергии.
Таким образом, действительный прогресс в эволюции биохимических механизмов преобразования энергии сопряжен с совершенствованием биосинтезов пигментных систем, преобразующих лучистую энергию света в химические формы энергии.
Нужно заметить, что и в этом направлении эволюция начиналась не «на пустом месте». Разнообразные пигменты легко синтезируются и без биохимических катализаторов из первичного бульона, содержащего аммиак, цианид, формальдегид, под действием например ультрафиолетового излучения. (Эти вопросы рассмотрены в ряде статей и в докладах на симпозиумах, посвященных происхождению предбиологических систем, а также в книгах А. И. Опарина, Дж. Бернала, М. Кальвина (см. также).
Биологически наиболее важные пигменты — порфирины образуются -в среде, содержащей метан, аммиак, воду и водород, под действием электрического разряда и ультрафиолета. Основной частью порфиринов являются пиррольные кольца. Еще в 1915 г. А. Е. Чичибабин показал, что пирролы образуются при пропускании ацетилена и аммиака через нагретую трубку. Примерно в то же время Мейер установил образование пирролов и при взаимодействии ацетилена с цианистым водородом. Конденсация пирролов в порфирины (тетрапиррольные кольца) также представляет собой обычный химический процесс.







Материалы

Яндекс.Метрика