Регулирование свойств мембраны

Попробуем представить себе возможные механизмы функционирования поверхностных клеточных мембран. Их функция состоит в избирательном пропускании одних веществ и не пропускании других, причем должно осуществляться как движение веществ по термодинамическому градиенту (из места с более высокой концентрацией в места с меньшей концентрацией), так и противоградиентное движение.
Ясно, что противоградиентное движение веществ может осуществляться лишь при использовании свободной энергии в каком-либо сопряженном экзэргоническом процессе.
Один из мыслимых способов противоградиентного перемещения состоит в уничтожении нормального градиента концентрации переносимого вещества. Это может осуществляться посредством связывания поступившего вещества в кинетически (осмотически) неактивный комплекс или же его вовлечения в какой-либо химический процесс. Так, глюкоза может исчезать в процессе образования из нее гликогена, аминокислоты — в процессах синтеза белка и т. д.
В этих случаях не возникает принципиальных трудностей в представлении исходных шагов эволюционного совершенствования. Задача такой мембраны — обеспечение лишь грубой избирательности, наличие в ней дырок, пор, позволяющих нужным веществам двигаться (диффундировать) по «искусственному» градиенту и препятствующих вытеканию протоплазмы. Я подчеркиваю слово вытекание, так как именно в препятствии макроскопическим потокам жидкости и состоит первоначальная функция мембран. Множество микродырок не мешает макроскопической функции мембраны. Так, пористые, ячеистые например, вязанные свитеры и даже крупноячеистые вуали, ограничивая макроскопические потоки воздуха, сохраняют прикожный нагретый слой воздуха, и поэтому «греют» людей.
Регулирование свойств такой мембраны также может быть очень грубым — нет нужды в специальной подгонке диаметра пор к размеру проходящих через мембрану молекул.
Однако задача усложняется тем, что в биохимических процессах с необходимостью должны участвовать и низкомолекулярные промежуточные продукты, не все время пребывающие в комплексах с макромолекулами.
Таким образом, сведение избирательности переноса веществ к биохимической специфичности — к избирательному вовлечению веществ в соответствующие биохимические процессы, лишь первый шаг эволюционного совершенствования трансмембранной системы переноса веществ.
Какие пути увеличения избирательности проницаемости мембран могут существовать в процессе эволюции?
Конечно, можно представить себе такое состояние протоплазмы, при котором все низкомолекулярные компоненты биохимических процессов оказываются в специфических комплексах с макромолекулами. Для его реализации нужно, чтобы образование этих комплексов было термодинамически выгодным. Величина выигрыша энергии при образовании комплекса низкомолекулярного вещества с макромолекулой и определит возможность «противоградиентного» переноса данного вещества. Слово «противоградиентный» взято в кавычки, поскольку в этом случае никакой противоградиентности нет — связывание вещества уменьшает его осмотическую, кинетическую активность. В месте образования комплекса создается активность (концентрация), меньшая, чем в других местах. Остается позаботиться о том, чтобы не вытекали сами макромолекулярные комплексы, а это обеспечивается образованием наружной дырявой, сетчатой мембраны или же соединением всех или большей части макромолекул в трехмерную сеть — гель. Такие желеобразные дискретные организмы в принципе удовлетворяют условиям дискретности и стабильности оптимальных по размерам комплектов матричных молекул, ферментов и метаболитов.
Однако скорости биохимических процессов в таких организмах будут далеко не предельно возможными. Скорости транспорта субстратов и продуктов в биохимических системах, где все участники связаны с макромолекулами геля, очень малы. Условием быстрого протекания биохимических процессов является свободное, неограниченное соединением с макромолекулами движение низкомолекулярных веществ в протоплазме. Эволюция должна обеспечить максимум скорости узловых биохимических процессов без специальных уже нехимических приспособлений и это достигается при совершенно незатрудненной диффузии.
Следовательно, среда, в которой протекают наиболее важные биохимические процессы, должна быть жидкой'. В этой маловязкой бесструктурной жидкой среде могут находиться относительно небольшие компактные структурные образования — митохондрии, хлоропласты и пр., но основная среда должна быть жидкой и основные метаболиты в ней не должны быть связаны с гелеобразным комплексом. Большинство низкомолекулярных метаболитов (субстратов, ионов металлов, анионов, кофермен-тов и пр.) в соответствии с требованием максимально возможной скорости протекания узловых биохимических процессов должно свободно диффундировать в маловязкой жидкой протоплазме. Следовательно, крупно-ячеистая мембрана служит недостаточно совершенной границей раздела организма и внешней среды, так как она не будет препятствовать утечке метаболитов. Мембрана должна обладать избирательной проницаемостью.







Материалы

Яндекс.Метрика