Исполнительные механизмы

Исполнительные механизмы являются теми средствами, с помощью которых роботы передвигаются и изменяют форму своего тела. Для того чтобы понять основные особенности конструкции исполнительных механизмов, необходимо вначале рассмотреть абстрактные понятия движения и формы, используя концепцию С степени свободы. Как степень свободы мы будем рассматривать каждое независимое направление, в котором могут передвигаться либо робот, либо один из его исполнительных механизмов. Например, твердотельный свободно движущийся робот, такой как автономный подводный аппарат, имеет шесть степеней свободы; три из них, (х,у, z), определяют положение робота в пространстве, а три других — его угловую ориентацию по трем осям вращения, известную как качание (yaw), поворот (roll) и наклон (pitch). Эти шесть степеней свободы определяют кинематическое состояние2 или позу робота. Динамическое состояние робота включает по одному дополнительному измерению для скорости изменения каждого кинематического измерения.
Роботы, не являющиеся твердотельными, имеют дополнительные степени свободы внутри самих себя. Например, в руке человека локоть имеет одну степень свободы (может сгибаться в одном направлении), а кисть имеет три степени свободы (может двигаться вверх и вниз, из стороны в сторону, а также вращаться). Каждый из шарниров робота также имеет 1, 2 или 3 степени свободы. Для перемещения любого объекта, такого как рука, в конкретную точку с конкретной ориентацией необходимо иметь шесть степеней свободы. Рука, показанная на рис. 25.3, я, имеет точно шесть степеней свободы, создаваемых с помощью пяти поворотных шарниров, которые формируют вращательное движение, и одного призматического сочленения, который формирует скользящее движение. Чтобы убедиться в том, что рука человека в целом имеет больше шести степеней свободы, можно провести простой эксперимент: положите кисть на стол и убедитесь в том, что вы еще имеете возможность поворачивать руку в локте, не меняя положения кисти на столе. Манипуляторами, имеющими больше степеней свободы, чем требуется для перевода конечного исполнительного механизма в целевое положение, проще управлять по сравнению с роботами, имеющими лишь минимальное количество степеней свободы.
В мобильных роботах количество степеней свободы не обязательно совпадает с количеством приводимых в действие элементов. Рассмотрим, например, обычный автомобиль: он может передвигаться вперед или назад, а также поворачиваться, что соответствует двум степеням свободы. В отличие от этого кинематическая конфигурация автомобиля является трехмерной — на открытой плоской поверхности можно легко перевести автомобиль в любую точку (х, у), с любой ориентацией (см. рис. 25.3, б). Таким образом, автомобиль имеет три С эффективные степени свободы, но две С управляемые степени свободы. Робот называется С неголономным, если он имеет больше эффективных степеней свободы, чем управляемых степеней свободы, и голономным, если эти два значения совпадают. Голономные роботы проще в управлении (было бы намного легче припарковать автомобиль, способный двигаться не только вперед и назад, но и в стороны), однако голономные роботы являются также механически более сложными. Большинство манипуляторов роботов являются голономными, а большинство мобильных роботов — неголономными.
В мобильных роботах применяется целый ряд механизмов для перемещения в пространстве, включая колеса, гусеницы и ноги. Роботы с С дифференциальным приводом оборудованы расположенными с двух сторон независимо активизируемыми колесами (или гусеницами, как в армейском танке). Если колеса, находящиеся с обеих сторон, вращаются с одинаковой скоростью, то робот движется по прямой. Если же они вращаются в противоположных направлениях, то робот поворачивается на месте. Альтернативный вариант состоит в использовании С синхронного привода, в котором каждое колесо может вращаться и поворачиваться вокруг вертикальной оси. Применение такой системы привода вполне могло бы привести к хаотическому перемещению, если бы не использовалось такое ограничение, что все пары колес поворачиваются в одном направлении и вращаются с одинаковой скоростью. И дифференциальный, и синхронный приводы являются неголономными. В некоторых более дорогостоящих роботах используются голономные приводы, которые обычно состоят из трех или большего количества колес, способных поворачиваться и вращаться независимо друг от друга.
Ноги, в отличие от колес, могут использоваться для передвижения не по плоской поверхности, а по местности, характеризующейся очень грубым рельефом. Тем не менее на плоских поверхностях ноги как средства передвижения значительно уступают колесам, к тому же задача создания для них механической конструкции является очень сложной. Исследователи в области робототехники предприняли попытки разработать конструкции с самым разным количеством ног, начиная от одной ноги и заканчивая буквально десятками. Были разработаны роботы, оборудованные ногами для ходьбы, бега и даже прыжков (как показано на примере шагающего робота на рис. 25.4, а). Этот робот является С динамически устойчивым; это означает, что он может оставаться в вертикальном положении, только непрерывно двигаясь. Робот, способный оставаться в вертикальном положении, не двигая ногами, называется С статически устойчивым. Робот является статически устойчивым, если центр его тяжести находится над многоугольником, охваченным его ногами.
В мобильных роботах других типов для передвижения используются иные, чрезвычайно разнообразные механизмы. В летательных аппаратах обычно применяются пропеллеры или турбины. Роботизированные дирижабли держатся в воздухе за счет тепловых эффектов. В автономных подводных транспортных средствах часто используются подруливающие устройства, подобные тем, которые устанавливаются на подводных лодках.
Для того чтобы робот мог функционировать, ему недостаточно быть оборудованным только датчиками и исполнительными механизмами. Полноценный робот должен также иметь источник энергии для привода своих исполнительных механизмов. Для приведения в действие манипулятора и для передвижения чаще всего используются электродвигатели; определенную область применения имеют также пневматические приводы, в которых используется сжатый газ, и гидравлические приводы, в которых используется жидкость под высоким давлением. Кроме того, в большинстве роботов имеются некоторые средства цифровой связи наподобие беспроводной сети. Наконец, робот должен иметь жесткий корпус, на который можно было бы навесить все эти устройства, а также, фигурально выражаясь, держать при себе паяльник, на тот случай, что его оборудование перестанет работать.







Материалы

Яндекс.Метрика