ПРЕДЫСТОРИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА


В данном разделе кратко описана история развития научных дисциплин, которые внесли свой вклад в область искусственного интеллекта в виде конкретный идей, воззрений и методов. Как и в любом историческом очерке, поневоле приходится ограничиваться описанием небольшого круга людей, событий и открытий, игнорируя все остальные факты, которые были не менее важными. Авторы построили этот исторический экскурс вокруг ограниченного круга вопросов. Безусловно, они не хотели бы, чтобы у читателя создалось такое впечатление, будто эти вопросы являются единственными, которые рассматриваются в указанных научных дисциплинах, или что сами эти дисциплины развивались исключительно ради того, чтобы их конечным итогом стало создание искусственного интеллекта.
Философия (период с 428 года до н.э. по настоящее время)
• Могут ли использоваться формальные правила для вывода правильных заключений?
• Как такой идеальный объект, как мысль, рождается в таком физическом объекте, как мозг?
• Каково происхождение знаний?
• Каким образом знания ведут к действиям?
Точный свод законов, руководящих рациональной частью мышления, был впервые сформулирован Аристотелем (384—322 годы до н.э.). Он разработал неформализованную систему силлогизмов, предназначенную для проведения правильных рассуждений, которая позволяла любому вырабатывать логические заключения механически, при наличии начальных предпосылок. Гораздо позднее Раймунд Луллий (умер в 1315 году) выдвинул идею, что полезные рассуждения можно фактически проводить с помощью механического артефакта. Предложенные им "концептуальные колеса" показаны на обложке данной книги. Томас Гоббс (1588-1679) предположил, что рассуждения аналогичны числовым расчетам и что "в наших неслышимых мыслях мы поневоле складываем и вычитаем". В то время автоматизация самих вычислений уже шла полным ходом; примерно в 1500 году Леонардо да Винчи (1452—1519) спроектировал, но не построил механический калькулятор; недавно проведенная реконструкция показала, что его проект является работоспособным. Первая известная вычислительная машина была создана примерно в 1623 году немецким ученым Вильгельмом Шиккардом (1592-1635), хотя более известна машина Паскалина, построенная в 1642 году Блезом Паскалем (1623—1662). Паскаль писал, что "арифметическая машина производит эффект, который кажется более близким к мышлению по сравнению с любыми действиями животных". Готтфрид Вильгельм Лейбниц (1646—1716) создал механическое устройство, предназначенное для выполнения операций над понятиями, а не над числами, но область его действия была довольно ограниченной.
После того как человечество осознало, каким должен быть набор правил, способных описать формальную, рациональную часть мышления, следующим этапом оказалось то, что разум стал рассматриваться как физическая система. Рене Декарт (1596-1650) впервые опубликовал результаты обсуждения различий между разумом и материей, а также возникающих при этом проблем. Одна из проблем, связанных с чисто физическими представлениями о разуме, состоит в том, что они, по-видимому, почти не оставляют места для свободной воли: ведь если разум руководствуется исключительно физическими законами, то человек проявляет не больше свободной воли по сравнению с булыжником, "решившим" упасть в направлении к центру земли. Несмотря на то что Декарт был убежденным сторонником взглядов, признающих только власть разума, он был также приверженцем дуализма. Декарт считал, что существует такая часть человеческого разума (душа, или дух), которая находится за пределами естества и не подчиняется физическим законам. С другой стороны, животные не обладают таким дуалистическим свойством, поэтому их можно рассматривать как своего рода машины. Альтернативой дуализму является материализм, согласно которому разумное поведение складывается из операций, выполняемых мозгом в соответствии с законами физики. Свободная воля — это просто форма, в которую в процессе выбора преобразуется восприятие доступных вариантов.
Если предположить, что знаниями манипулирует физический разум, то возникает следующая проблема — установить источник знаний. Такое научное направление, как эмпиризм, родоначальником которого был Фрэнсис Бекон (1561-1626), автор Нового Органона4, можно охарактеризовать высказыванием Джона Локка (1632— 1704): "В человеческом понимании нет ничего, что не проявлялось бы прежде всего в ощущениях". Дэвид Юм (1711 — 1776) в своей книге A Treatise of Human Nature
(Трактат о человеческой природе) [705] предложил метод, известный теперь под названием принципа индукции, который состоит в том, что общие правила вырабатываются путем изучения повторяющихся ассоциаций между элементами, которые рассматриваются в этих правилах. Основываясь на работе Людвига Виттгенштейна (1889—1951) и Бертрана Рассела (1872—1970), знаменитый Венский кружок, возглавляемый Рудольфом Карнапом (1891-1970), разработал доктрину Алогического позитивизма. Согласно этой доктрине все знания могут быть охарактеризованы с помощью логических теорий, связанных в конечном итоге с А констатирующими предложениями, которые соответствуют входным сенсорным данным5. В А теории подтверждения Рудольфа Карнапа и Карла Хемпеля (1905—1997) предпринята попытка понять, как знания могут быть приобретены из опыта. В книге Карнапа The Logical Structure of the World [223] определена явно заданная вычислительная процедура для извлечения знаний из результатов элементарных опытов. По-видимому, это —- первая теория мышления как вычислительного процесса.
Заключительным элементом в этой картине философских исследований проблемы разума является связь между знаниями и действиями. Данный вопрос для искусственного интеллекта является жизненно важным, поскольку интеллектуальность требует не только размышлений, но и действий. Кроме того, только поняв способы обоснования действий, можно понять, как создать агента, действия которого будут обоснованными (или рациональными). Аристотель утверждал, что действия обоснованы логической связью между целями и знаниями о результатах данного конкретного действия (последняя часть приведенной ниже цитаты Аристотеля на языке оригинала размещена также на обложке данной книги). Характерным примером рассуждений о рациональных действиях являются следующие.
Но почему происходит так, что размышления иногда сопровождаются действием, а иногда — нет, иногда за ними следует движение, а иногда — нет? Создается впечатление, как будто почти то же самое происходит и в случае построения рассуждений и формирования выводов о неизменных объектах. Но в таком случае целью умственной деятельности оказывается умозрительное суждение..., тогда как заключением, которое следует из данных двух предпосылок, является действие... Мне нужна защита от дождя; защитой может послужить плащ. Мне нужен плащ. Я должен сам изготовить то, в чем я нуждаюсь; я нуждаюсь в плаще. Я должен изготовить плащ. И заключение "я должен изготовить плащ" становится действием ([1151, с. 40]).
В книге Никомахова этика (том III. 3, 1112Ь) Аристотеля можно найти более подробные рассуждения на эту тему, где также предложен алгоритм.
Нам предоставляется право выбора не целей, а средств достижения цели, ведь врач рассуждает не о том, должен ли он лечить, а оратор — не о том, станет ли он убеждать... Поставив цель, он размышляет, как и какими средствами ее достичь; а если окажется несколько средств, то определяет, какое из них самое простое и наилучшее; если же достижению цели служит одно средство, думает, как ее достичь при помощи этого средства и что будет средством для этого средства, пока не дойдет до первой причины, которую находит последней... и то, что было последним в порядке анализа, обычно становится первым в порядке осуществления... Если же он приходит к выводу, что цель недостижима, отступается, например, если нужны деньги, а достать их нельзя; но если достижение цели кажется возможным, то пытается ее достичь.
Алгоритм Аристотеля был реализован через 2300 лет Ньюэллом и Саймоном в программе GPS. Теперь то, что создано на его базе, принято называть регрессивной системой планирования (см. главу 11).
Анализ на основе цели является полезным, но не дает ответа на то, что делать, если к цели ведет несколько вариантов действий или ни один вариант действий не позволяет достичь ее полностью. Антуан Арно (1612—1694) правильно описал количественную формулу для принятия решения о том, какое действие следует предпринять в подобных случаях (см. главу 16). В книге Utilitarianism приверженца утилитаризма Джона Стюарта Милла (1806—1873) [1050] провозглашена идея о том, что критерии принятия рациональных решений должны применяться во всех сферах человеческой деятельности. Более формальная теория принятия решений рассматривается в следующем разделе.
Математика (период примерно с 800 года по настоящее время)
• Каковы формальные правила формирования правильных заключений?
• Как определить пределы вычислимости?
• Как проводить рассуждения с использованием недостоверной информации?
Философы сформулировали наиболее важные идеи искусственного интеллекта, но для преобразования его в формальную науку потребовалось достичь определенного уровня математической формализации в трех фундаментальных областях: логика, вычисления и вероятность.
Истоки идей формальной логики можно найти в работах философов древней Греции (см. главу 7), но ее становление как математической дисциплины фактически началась с трудов Джорджа Буля (1815-1864), который детально разработал логику высказываний, или булеву логику [149]. В 1879 году Готтлоб Фреге (1848—1925) расширил булеву логику для включения в нее объектов и отношений, создав логику первого порядка, которая в настоящее время используется как наиболее фундаментальная система представления знаний6. Альфред Тарский (1902—1983) впервые ввел в научный обиход теорию ссылок, которая показывает, как связать логические объекты с объектами реального мира. Следующий этап состоял в определении пределов того, что может быть сделано с помощью логики и вычислений.
Первым нетривиальным алгоритмом считается алгоритм вычисления наибольшего общего знаменателя, предложенный Евклидом. Исследование алгоритмов как самостоятельных объектов было начато аль-Хорезми, среднеазиатским математиком IX столетия, благодаря работам которого Европа познакомилась с арабскими цифрами и алгеброй. Буль и другие ученые широко обсуждали алгоритмы логического вывода, а к концу XIX столетия уже предпринимались усилия по формализации общих принципов проведения математических рассуждений как логического вывода. В 1900 году Давид Гильберт (1862-1943) представил список из 23 проблем и правильно предсказал, что эти проблемы будут занимать математиков почти до конца XX века. Последняя из этих проблем представляет собой вопрос о том, существует ли алгоритм для определения истинности любого логического высказывания, в состав которого входят натуральные числа. Это — так называемая знаменитая проблема поиска решения (Entscheidungsproblem). По сути, этот вопрос, заданный Гильбертом, сводился к определению того, есть ли фундаментальные пределы, ограничивающие мощь эффективных процедур доказательства. В 1930 году Курт Гёдель (1906—1978) показал, что существует эффективная процедура доказательства любого истинного высказывания в логике первого порядка Фреге и Рассела, но при этом логика первого порядка не позволяет выразить принцип математической индукции, необходимый для представления натуральных чисел. В 1931 году Гёдель показал, что действительно существуют реальные пределы вычислимости. Предложенная им теорема о неполноте показывает, что в любом языке, достаточно выразительном для описания свойств натуральных чисел, существуют истинные высказывания, которые являются недоказуемыми, в том смысле, что их истинность невозможно установить с помощью какого-либо алгоритма.
Этот фундаментальный результат может также рассматриваться как демонстрация того, что имеются некоторые функции от целых чисел, которые не могут быть представлены с помощью какого-либо алгоритма, т.е. они не могут быть вычислены. Это побудило Алана Тьюринга (1912-1954) попытаться точно охарактеризовать, какие функции способны быть вычисленными. Этот подход фактически немного проблематичен, поскольку в действительности понятию вычисления, или эффективной процедуры вычисления, не может быть дано формальное определение. Но общепризнано, что вполне удовлетворительное определение дано в тезисе Чёрча—Тьюринга, который указывает, что машина Тьюринга [1518] способна вычислить любую вычислимую функцию. Кроме того, Тьюринг показал, что существуют некоторые функции, которые не могут быть вычислены машиной Тьюринга. Например, вообще говоря, ни одна машина не способна определить, возвратит ли данная конкретная программа ответ на конкретные входные данные или будет работать до бесконечности.
Хотя для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма [272] и Эдмондса [430]. Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.
Как можно распознать неразрешимую проблему? Один из приемлемых методов такого распознавания представлен в виде теории NP-полноты, впервые предложенной Стивеном Куком [289] и Ричардом Карпом [772]. Кук и Карп показали, что существуют большие классы канонических задач комбинаторного поиска и формирования рассуждений, которые являются NP-полными. Существует вероятность того, что любой класс задач, к которому сводится этот класс NP-полных задач, является неразрешимым. (Хотя еще не было доказано, что NP-полные задачи обязательно являются неразрешимыми, большинство теоретиков считают, что дело обстоит именно так.) Эти результаты контрастируют с тем оптимизмом, с которым в популярных периодических изданиях приветствовалось появление первых компьютеров под такими заголовками, как "Электронные супермозги", которые думают "быстрее Эйнштейна!" Несмотря на постоянное повышение быстродействия компьютеров, характерной особенностью интеллектуальных систем является экономное использование ресурсов. Грубо говоря, наш мир, в котором должны освоиться системы ИИ, — это чрезвычайно крупный экземпляр задачи. В последние годы методы искусственного интеллекта помогли разобраться в том, почему некоторые экземпляры NP-полных задач являются сложными, а другие простыми [244].
Кроме логики и теории вычислений, третий по величине вклад математиков в искусственный интеллект состоял в разработке теории вероятностей. Идея вероятности была впервые сформулирована итальянским математиком Джероламо Кар-дано (1501 — 1576), который описал ее в терминах результатов событий с несколькими исходами, возникающих в азартных играх. Теория вероятностей быстро стала неотъемлемой частью всех количественных наук, помогая использовать недостоверные результаты измерений и неполные теории. Пьер Ферма (1601 — 1665), Блез Паскаль (1623-1662), Джеймс Бернулли (1654-1705), Пьер Лаплас (1749—1827) и другие ученые внесли большой вклад в эту теорию и ввели новые статистические методы. Томас Байес (1702—1761) предложил правило обновления вероятностей с учетом новых фактов. Правило Байеса и возникшее на его основе научное направление, называемое байесовским анализом, лежат в основе большинства современных подходов к проведению рассуждений с учетом неопределенности в системах искусственного интеллекта.
Экономика (период с 1776 года по настоящее время)
• Как следует организовать принятие решений для максимизации вознаграждения?
• Как действовать в таких условиях, когда другие могут препятствовать осуществлению намеченных действий?
• Как действовать в таких условиях, когда вознаграждение может быть предоставлено лишь в отдаленном будущем?
Экономика как наука возникла в 1776 году, когда шотландский философ Адам Смит (1723—1790) опубликовал свою книгу An Inquiry into the Nature and Causes of the Wealth of Nations (Исследование о природе и причинах богатства народов). Важный вклад в экономику был сделан еще древнегреческими учеными и другими предшественниками Смита, но только Смит впервые сумел оформить эту область знаний как науку, используя идею, что любую экономику можно рассматривать как состоящую из отдельных агентов, стремящихся максимизировать свое собственное экономическое благосостояние. Большинство людей считают, что экономика посвящена изучению денежного оборота, но любой экономист ответит на это, что в действительности он изучает то, как люди делают выбор, который ведет к предпочтительным для них результатам. Математическая трактовка понятия "предпочтительных результатов", или полезности, была впервые формализована Леоном Валрасом (1834—1910), уточнена Фрэнком Рамсеем [1265], а затем усовершенствована Джоном фон Нейманом и Оскаром Морген Штерном в книге The Theory of Games and Economic Behavior (Теория игр и экономического поведения) [1546].
Теория решений, которая объединяет в себе теорию вероятностей и теорию полезности, предоставляет формальную и полную инфраструктуру для принятия решений (в области экономики или в другой области) в условиях неопределенности, т.е. в тех случаях, когда среда, в которой действует лицо, принимающее решение, наиболее адекватно может быть представлена лишь с помощью вероятностных описаний. Она хорошо подходит для "крупных'1 экономических образований, где каждый агент не обязан учитывать действия других агентов как индивидуумов. А в "небольших" экономических образованиях ситуация в большей степени напоминает игру, поскольку действия одного игрока могут существенно повлиять на полезность действий другого (или положительно, или отрицательно). Теория игр, разработанная фон Нейманом и Моргенштерном (см. также [963]), позволяет сделать неожиданный вывод, что в некоторых играх рациональный агент должен действовать случайным образом или, по крайней мере, таким образом, который кажется случайным для соперников.
Экономисты чаще всего не стремятся найти ответ на третий вопрос, приведенный выше, т.е. не пытаются выработать способ принятия рациональных решений в тех условиях, когда вознаграждение в ответ на определенные действия не предоставляется немедленно, а становится результатом нескольких действий, выполненных в определенной последовательности. Изучению этой темы посвящена область исследования операций, которая возникла во время Второй мировой войны в результате усилий, которые были предприняты в Британии по оптимизации работы радарных установок, а в дальнейшем нашла применение и в гражданском обществе при выработке сложных управленческих решений. В работе Ричарда Беллмана [97] формализован определенный класс последовательных задач выработки решений, называемых марковскими процессами принятия решений (Markov Decision Process — MDP), которые рассматриваются в главах 17 и 21.
Работы в области экономики и исследования операций оказали большое влияние на сформулированное в этой книге понятие рациональных агентов, но в течение многих лет исследования в области искусственного интеллекта проводились совсем по другим направлениям. Одной из причин этого была кажущаяся сложность задачи выработки рациональных решений. Тем не менее Герберт Саймон (1916—2001) в некоторых из своих ранних работ показал, что лучшее описание фактического поведения человека дают модели, основанные на удовлетворении (принятии решений, которые являются "достаточно приемлемыми"), а не модели, предусматривающие трудоемкий расчет оптимального решения [1414], и стал одним из первых исследователей в области искусственного интеллекта, получившим Нобелевскую премию по экономике (это произошло в 1978 году). В 1990-х годах наблюдалось возрождение интереса к использованию методов теории решений для систем агентов [1576].
Неврология (период с 1861 года по настоящее время)
• Как происходит обработка информации в мозгу?
Неврология — это наука, посвященная изучению нервной системы, в частности мозга. Одной из величайших загадок, не поддающихся научному описанию, остается определение того, как именно мозг обеспечивает мышление. Понимание того, что мышление каким-то образом связано с мозгом, существовало в течение тысяч лет, поскольку люди обнаружили, что сильные удары по голове могут привести к умственному расстройству. Кроме того, уже давно было известно, что человеческий мозг обладает какими-то важными особенностями; еще примерно в 335 до н.э. Аристотель7 писал: "Из всех животных только человек имеет самый крупный мозг по сравнению с его размерами". Тем не менее широкое признание того, что мозг является вместилищем сознания, произошло только в середине XVIII столетия. До этого в качестве возможных источников сознания рассматривались сердце, селезенка и шишковидная железа (эпифиз).
Исследования афазии (нарушения речи) у пациентов с повреждением мозга, проведенные Полем Брока (1824-1880) в 1861 году, снова пробудили интерес к этой научной области и послужили для многих представителей медицины доказательством существования в мозгу локализованных участков, ответственных за конкретные познавательные функции. Например, этот ученый показал, что функции формирования речи сосредоточены в той части левого полушария, которая теперь называется зоной Брокер. К тому времени уже было известно, что мозг состоит из нервных клеток, или нейронов, но только в 1873 году Камилло Гольджи (1843-1926) сумел разработать надежный метод, позволяющий наблюдать за отдельными нейронами в мозгу (рис. 1.1). Этот метод использовал Сантьяго Рамон и Кахал (1852—1934) в своих пионерских исследованиях нейронных структур мозга9.
Теперь ученые располагают некоторыми данными о том, как связаны между собой отдельные области мозга и те части тела, которыми они управляют или от которых получают сенсорные данные. Оказалось, что подобная привязка может коренным образом измениться в течение нескольких недель, а у некоторых животных, по-видимому, имеется несколько вариантов такой привязки. Более того, еще не совсем понятно, как другие области могут взять на себя функции поврежденных областей. К тому же почти полностью отсутствуют обоснованные теории того, как осуществляется хранение информации в памяти индивидуума.
Измерение активности неповрежденного мозга началось в 1929 году с изобретения электроэнцефалографа (ЭЭГ) Гансом Бергером. Разработки в области получения изображений на основе функционального магнитного резонанса [1152] позволили неврологам получать исключительно подробные изображения активности мозга, что дает возможность проводить измерения характеристик физиологических процессов, которые связаны с происходящими познавательными процессами какими-то интересными способами. Эти возможности для исследований становятся еще более широкими благодаря прогрессу в области регистрации нейронной активности отдельной клетки. Но, несмотря на эти успехи, ученые еще очень далеки от понимания того, как действительно осуществляется любой из этих познавательных процессов.
Тем не менее работы в области неврологии позволяют сделать поистине удивительное заключение о том, что с3 совместная работа простых клеток может приводить к появлению мышления, действия и сознания или, другими словами, что мозг порождает разум [1379]. После этого открытия единственной реально существующей альтернативной теорией остается мистицизм, приверженцы которого провозглашают, что существует некое мистическое пространство, находящееся за пределами физического опыта, в котором функционирует разум.
Мозг и цифровой компьютер выполняют совершенно разные задачи и имеют различные свойства. В табл. 1.2 показано, что в типичном мозгу человека имеется в 1000 раз больше нейронов, чем логических элементов в процессоре типичного компьютера высокого класса. В соответствии с законом Мура10 может быть сделан прогноз, что количество логических элементов в процессоре станет равным количеству нейронов в мозгу примерно к 2020 году. Безусловно, эти прогнозы мало о чем говорят; кроме того, это различие в отношении количества элементов является незначительным по сравнению с различием в скорости переключения и степени распараллеливания. Микросхемы компьютера способны выполнить отдельную команду меньше чем за наносекунду, тогда как нейроны действуют в миллионы раз медленнее. Но мозг сторицей восполняет этот свой недостаток, поскольку все его нейроны и синапсы действуют одновременно, тогда как большинство современных компьютеров имеет только один процессор или небольшое количество процессоров. Таким образом, сг* даже несмотря на то, что компьютер обладает преимуществом более чем в миллион раз в физической скорости переключения, оказывается, что мозг по сравнению с ним выполняет все свои действия примерно в 100 ООО раз быстрее.







Материалы

Яндекс.Метрика