Материя зерниста

Постоянно соприкасаясь с окружающими нас телами природы, живыми и мертвыми, твердыми, жидкими и газообразными, человек пришел к одному из важнейших своих обобщений: к понятию о веществе, о материи. Каковы свойства этой материи, каково ее строение? Этот вопрос, который должен поставить перед собой всякий, изучающий природу.
И первый ответ, который дает нам непосредственное ощущение, это видимая непрерывность вещества. Но это впечатление — обман наших чувств. Пользуясь микроскопом, мы часто открываем в веществе пористость, то есть наличие мелких пустот, не видимых невооруженным глазом.
Но и для таких веществ, в которых, казалось бы, принципиально не может быть пор, как вода, спирт и другие жидкости, а также для газов мы должны признать наличие промежутков между частицами вещества, иначе нам нельзя было бы понять, почему вещества могут сжиматься при давлении, почему они могут расширяться при нагревании.
Всякая материя зерниста. Самые малые зернышки вещества получили название атомов или молекул. Удалось измерить, например, что у воды сами молекулы занимают всего лишь около трети или четверти пространства. Остальное приходится на поры.
Сейчас мы знаем, что при сближении атомов возникают силы отталкивания и атомы не могут слиться друг с другом. Около каждого атома можно описать «сферу непроницаемости», за которую при обычных химических реакциях не может проникнуть другая материя. Поэтому атомы вместе с этой сферой можно рассматривать как упругие шарики, непроницаемые друг для друга. Каждый элемент имеет сферу непроницаемости, радиус которой выражается в ангстремах. Меньше всего этот радиус у углерода — 0,18 ангстрема и у кремния — 0,41 ангстрема, радиус у железа — 0,67 и 0,79, у кальция — 1,01, у кислорода радиус сферы непроницаемости большой — 1,32 ангстрема (см. рисунок на странице 23, где элементы изображены в виде кружков, пропорциональных размерам радиусов их сфер).
Но если мы будем укладывать шары в какой-либо ящик, то беспорядочно расположенные шары займут больше места, чем при правильной укладке. Та из укладок, которая займет наименьший объем, называется плотнейшей упаковкой. Ее легко получить, например, при таком опыте: взяв несколько десятков стальных шариков (от шарикоподшипника), положить их на блюдечко и легко постукивать. Благодаря тому, что все шарики будут стремиться к центру блюдечка, они будут теснить друг друга и скоро расположатся рядами, образующими между собой угол в 60°. Снаружи они расположатся по сторонам правильного шестиугольника. Это и будет плотнейшая упаковка шаров одного размера на плоскости.
Так уложены, например, атомы многих металлов — меди, золота и других.
Если шары неодинаковые, например двух резко различающихся размеров, то часто случается, что шары большего размера (например, хлор — у кристаллов поваренной соли) дают плотнейшую упаковку, а меньший атом располагается в промежутках между крупными шарами.
Таким образом, у поваренной соли или минерала галита — NaCl — один атом натрия окружен с шести сторон атомами хлора, а каждый атом хлора окружен с шести сторон атомами натрия. При этих условиях силы притяжения между ионами натрия и хлора оказываются наибольшими.
Итак, окружающие нас тела, независимо от степени их сложности, состоят из сочетания отдельных мельчайших, невидимых простым глазом частиц, или атомов, наподобие того, как большое красивое здание бывает построено из отдельных небольших кирпичей.
Мысль об этом зародилась в глубокой древности, и понятие «атом» (по-гречески — «неделимый») мы встречаем еще у греческих философов-материалистов Левкиппа и Демокрита за шестьсот — четыреста лет до нашей эры. По современным представлениям, начало которым было положено еще в девятнадцатом столетии, химический элемент в свободном состоянии в форме простого тела состоит из совокупности однородных атомов, далее не делимых без потери химических качеств и особенностей, присущих данному элементу.







Материалы

Яндекс.Метрика